
Think logarithmically!
1

Maciej M. Sysło

Nicolaus Copernicus University, Faculty of Mathematics and Computer Science,
Chopin str. 12/18, 87-100 Toruń, Poland, syslo@mat.umk.pl

University of Wrocław, Faculty of Mathematics and Computer Science,
F. Joliot-Curie str. 15, 50-383 Wrocław, Poland, syslo@ii.uni.wroc.pl

Dedicated to John Napier
on the occasion of the 400th anniversary

of inventing logarithm in his book
Mirifici Logarithmorum Canonis Descriptio

Abstract
In this paper we discuss a number of algorithmic topics which we use in our teach-
ing and in learning of mathematics and informatics to illustrate and document the
power of logarithm in designing very efficient algorithms and computations – loga-
rithmic thinking is one of the most important key competencies for solving many real
world practical problems. We demonstrate also how to introduce logarithm inde-
pendently of mathematical formalism using a conceptual model for reducing a prob-
lem size by at least half. It is quite surprising that the idea which leads to logarithm,
is present in Euclid’s algorithm described almost 2000 years before John Napier in-
vented logarithm.

Keywords
logarithm, binary search, binary representation, exponentiation, Euclid’s algorithm,
Fibonacci numbers, divide and conquer, complexity

INTRODUCTION
Logarithm is a very important operation and function in computer science, not only
because ‘logarithm’ is an anagram of ‘algorithm’. Today it is difficult to imagine how
one could study and work in computer science, on any level of education and study,
not knowing this concept. Logarithm is formally introduced in high schools (at least
in Poland) as a mathematical concept, see the next Section. In this paper we
demonstrate how to introduce logarithm in informatics as well as in mathematics
using conceptual models which have a computing flavour and are related to
practical applications.

We consider here five themes/questions:

 how many times do we have to read a page in a paper dictionary to find a given
word?

 how many bits does an integer occupy in a computer?

 how many multiplications are needed to calculate the value of the exponential
function?

 how fast can we find the greatest common divisor of two numbers?

1
 A shorter version of this paper, co-authored by Anna B. Kwiatkowska, was presented at the con-

ference “KEYCIT – Key Competencies in Informatics and ICT (KEYCIT 2014)”, University of Potsdam,
Germany, July 1-4, 2014 and appeared in the conference proceedings: T. Brinda, N. Reynolds, R. Ro-
meike, A. Schwill (eds.), KEYCIT 2014, Commentarii informaticae didacticae (CID) 7, Universitaetsver-
lag Potsdam 2015, pp. 371-380. Its translation into Polish appeared in Delta 12, 2014, pp. 10-13.

mailto:syslo@mat.umk.pl
mailto:syslo@ii.uni.wroc.pl

 how many steps does a divide and conquer algorithm need when applied to
a problem of size n.

A common feature of the answers to these questions is that all of them touch
logarithm, directly or indirectly, and moreover they contribute to better understanding
this concept and its role in relation to its practical applications in designing efficient
algorithms and computations.

In our presentation, as much as possible, we avoid to use any reference to logarithm
as a mathematical concept. Then, after informal introduction of the logarithmic
function, we define logarithm in an algorithmic (operational) way.

We consider logarithmic thinking in problem solving activities as one of the most
important facets of algorithmic and computational thinking (see Wing, 2016) and as
a key competence necessary for general education to master high school and
academic informatics as well as ICT studies.

We refer the reader to our school textbook (Gurbiel et al., 2002-2003), books (Sysło,
1997, 2015) and (Sysło, 1997, 2016) and papers (Sysło & Kwiatkowska, 2006) and
(Sysło & Kwiatkowska, 2014) for detailed presentations of the topics discussed here.

LOGARITHM AS A MATHEMATICAL CONCEPT
Logarithm appears in the core curriculum of mathematics in high schools in Poland
on both levels, basic and extended, in the sections on real numbers and functions.
On the basic level of competences students are expected to be able to apply in cal-
culations formulas which involve logarithm of product, quotient, and power of num-
bers, and on the extended level – also the formula for changing the base of loga-
rithm.

The logarithmic function appears only in the mathematics curricula on the extended
level, and students are expected to draw a graph of this function and moreover to
use logarithmic function in modelling physical and chemical phenomena and also in
some practical situations (which are not described in details in the curriculum). No
application of logarithm in informatics (computer science) is mentioned in the math-
ematics curriculum and reviewing mathematics syllabi and textbooks shows also
that in general no connections of logarithm to its applications in computing are sub-
ject of mathematics instruction in the classroom.

The paper (Webb et al., 2011) reports on promoting student understanding of loga-
rithm using the instructional design theory of Realistic Mathematics Education,
based on a principle that engagement in mathematics for students should begin
within a meaningful context. However, no informatics context is considered.

This situation motivated us to write a paper (Sysło & Kwiatkowska, 2006) on contri-
bution of informatics education to mathematics education in schools, where we dis-
cuss several problems of mathematical flavour included in the informatics curriculum
which can contribute to better understanding and appreciating mathematical con-
cepts and their use in contemporary mathematics and its use in computing. One of
such concepts is logarithm which students consider to be hard to understand and to
master – some of them used to explain that logarithm is not only one of the functions
they do not like, but also, it is an inverse function.

Most of the concepts and topics discussed in this paper belong to discrete mathe-
matics, known as mathematics of our times, mathematics of the computer era,
mathematics of computing. We use the approach presented here in mathematics

instructions in schools K-12 as well as in teaching discrete mathematics at university
level.

FIND A WORD, GUESS A NUMBER
A paper telephone book consists of 1000 pages. Find the page which contains the
telephone number of Mr. Smith M.M. checking the smallest possible number of
pages. Searching for a right page, students discover (or they already know) that the
best strategy is a binary search, that is to keep splitting the remaining pages into
two equal-size parts and to eliminate the part which does not contain the entry with
Smith M.M., until only one page remains, which should contain Smith’s telephone
number. Instead of a telephone book one can choose an encyclopaedia or
a dictionary.

The game of guessing an integer hidden in a given interval may serve the same
purpose and can be used to activate whole class. We encourage students to play
several rounds of this game in pairs and to fill in a table such as seen in Fig. 1.

Interval
Interval

size
Hidden
number

Number of
questions asked

LOG
log2(Interval

size)

[1, 80] 80 65 7 7 7

[51, 180] 130 100 7 8 8

[51, 180] 130 65

Figure 1: A table for the results of the game to find a hidden number

Regardless of the hidden number, LOG is equal to the number of times the interval
size is divided by 2 to obtain 1 (when an odd number is divided by 2 we always take
‘a bigger half’), for instance: 80, 40, 20, 10, 5, 3, 2, 1. The last column in the table
could be filled in later. For any game, numbers in last three columns should be close
to each other.

Related topics and questions discussed with students:

 the importance of order among the elements in a dictionary and in an interval:
how many times do we have to read a page in a paper telephone book of 1000
pages to find the owner of the phone number 1234567?

 in the case of a dictionary, when we have to find a word which begins with one of
the initial letters in the alphabet, then we usually try to find this word on initial
pages of the dictionary – such a strategy is called an interpolation search. We
ask students to find in the Internet more information on this type of search, in
particular regarding its complexity.

BINARY REPRESENTATION – A SIZE OF A NUMBER
Students usually know how to find a binary representation for a given nonnegative
integer number n – such a representation is generated in succes-
sive divisions of n and the resulting quotients by 2. They divide n
by 2 and take the reminder r (0 or 1) as the least significant digit of
the representation. Then, apply this procedure to the quotient q
and continue as far as the quotient is nonzero. For n = 23 we get
(10111)2, as in the table.

Then we ask students, how many binary digits has a decimal
number n in its binary representation or equivalently, how much space in the com-
puter memory we need for storing number n. To answer this question let us assume

n q r

23 11 1

11 5 1

5 2 1

2 1 0

1 0 1

that n needs k bits (however at this point we do not know the value of k). To find k,
now we first have to determine the smallest and the largest numbers which can be
represented on exactly k bits. The largest number has all k bits equal 1, hence we
have:

(111…1)2 = 2k–1 + 2k–2 + … + 22 + 21 + 20 = 2k – 1

It is easy to see that when we add 1 to this binary number we get 2k, the next power
of 2, hence we get the last equality above. On the other hand, the smallest integer
which needs k bits has only 1 on its most significant position, therefore equals 2k–1.
Therefore we have the following inequalities:

2k–1 – 1 < n ≤ 2k – 1.

Now, adding 1 to all sides of these inequalities and taking log2 of all sides we get the
inequalities:

k – 1 < log2 (n + 1) ≤ k.

Since the number of bits k is an integer number, we have:

k = log2 (n + 1),

where x is the ceiling function and is equal to the smallest integer number greater
than or equal to x.

We may conclude now that an integer number n occupies about log2n bits in
a computer memory – this number is sometimes taken as the size of n in
a computer. Moreover, since a binary search in an interval of size n corresponds to
finding the binary representation of n, we conclude also, that the number of steps in
a binary search in an interval of size n equals about log2n.

Finally we may reverse our arguments and define log2n algorithmically:

Logarithm log2n is equal to the number of steps in which, successive
divisions of n and the resulting quotients by 2 lead to 1.

LOGARITHM
Now we have to convince students that the logarithmic function is very important in
informatics – its importance lies in its rate of growth – although this function tends to
infinity with n going to infinity but it is incomparably slower function comparing with
the linear growth of n. The table, such as in Fig. 2 is the best illustration of our
words, see also next section. We usually ask some students to verify some of the
entries in the second column of such a table.

N log2n

128 7

1024 10

65 536 16

1 048 576 20

1010 34

1050 167

10100 333

10200 665

10300 997

10500 1661

Figure 2: Linear versus logarithmic growth

EXPONENTIATION
Fast exponentiation, that is calculation of a power xn, is a crucial step in many real-
world computations, such as compound interest, population growth, and public key
cryptography (e.g., RSA and PGP). Practical values of the exponent n, for instance
in RSA, are really very big numbers having hundreds of digits. We first ask student
to calculate, how long a PFLOPS super computer (it performs 1015 multiplications
per second) will compute xn for a ‘small’ exponent n consisting of 30 digits, for
instance when n = 123456789012345678901234567890, using the ‘school’ method
which depends on performing n – 1 multiplications. Using the Windows calculator
students can easily find that it will take more than … 107 years.

Our task now is to direct students to a faster method for exponentiation which, as in
the previous two cases, reduces the exponent by half at each step. When the
exponent is an even integer, they quickly come up with the formula x2k = (xk)2 and
when the exponent is odd we suggest to transform this case to the even case and
they quickly come up with the formula x2k+1 = (x2k)x. Then students use these
observations to find a method x23 can be calculated. Repeated application of these
rules leads to the following transformations of the power:

x23 = (x22)x = ((x11)2)x = (((x10)x)2)x = ((((x5)2)x)2)x = (((((x4)x)2)x)2)x = ((((((x2)2)x)2)x)2)x

Therefore, to compute the power x23, only 7 multiplications are needed, instead of
22 (squaring a number needs one multiplication).

Next task is to estimate how many multiplications are used by this algorithm for
arbitrary n. We ask students to compare the binary representation of n = 23 =
(10111)2 with the order of multiplications above, going from right to left. It becomes
clear that except the left most position, each bit 1 corresponds to multiplication by x
and each position corresponds to squaring. Therefore, the number of multiplications
in computing xn by the above algorithm is equal to the number of binary positions in
the representation minus 1 plus the number of 1’s in the representation minus 1.
Since, as we know, the length of the binary representation of n is about log2n, the
number of multiplication needed to calculate xn is at most 2log2n.

Finally we can estimate how many multiplication performs the algorithm we have
described for n = 123456789012345678901234567890. We have 2log2n < 194. It is
tremendous achievement in complexity – it takes a moment to perform 194
multiplications instead of waiting 107 years to get the result. The table in Fig. 2
shows that calculating xn for n with hundreds of digits takes a few thousands of
multiplications.

The exponentiation algorithm described above can be expressed as a recursive
procedure, see (Sysło & Kwiatkowska, 2014) for further discussion:

EUCLID’S ALGORITHM
We begin this section with its concluding statement and the main observation of this
paper:










 xx

xx
n

nn

)(

)(

1

1

22/

for n = 0

for n – even

for n – odd

Euclid was very close to invent logarithm, almost 2000 years
before John Napier did it!

We first ask students to apply Euclid’s algorithm to find the
greatest common divisor GCD(n, m) of two given numbers n and

m (n  m), for instance for n = 34 and m = 21. The algorithm
generates a sequence of reminders (in the third column):

r–1, r0, r1, r2, …, rk

which begins with the given numbers r–1 = n, r0 = m and terminates
when the reminder becomes equal 0, rk = 0. The reminders are
generated according to the following equations:

r-1 = q1r0 + r1, where 0 ≤ r1 < r0

r0 = q2r1 + r2, where 0 ≤ r2 < r1

…

rk–2 = qkrk–1 + rk, where 0 ≤ rk < rk–1

and GCD(n, m) = rk–1. The first equation corresponds to the first row in the table, and
so on, and the last equation corresponds to the last row. The quotients qi and
reminders ri satisfy:

qi = ri–2 div ri–1, and ri = ri–2 mod ri–1

Now we want to investigate with students how many steps needs Euclid’s algorithm
to find GCD(n, m). We suggest first to compare the numbers in columns 1 and 3 in
the table above. Students should notice that in the same row, the number in the third
column is at least twice smaller than the number in the first column, that is, in the
equation ri = ri–2 mod ri–1, ri is at least twice smaller than ri–2.

Therefore we want to show, that in general the reminder r from dividing n by m is not
greater than n/2. We usually provide a geometric proof of this property in which
there are two cases.

A. m ≤ n/2. In this case, when n is divided by m, then the reminder is not greater
than m, which is at most n/2.

n:

m:

B. m > n/2. In this case, the reminder equals n – m and since m > n/2, then n – m is
not greater than n/2.

n:

m:

Therefore in the sequence of numbers generated by Euclid’s algorithm, each
number is at least two times smaller than the number which appears two positions
earlier. It reminds a sequence generated by a binary search except a sequence of
the resulting numbers could be twice longer before it reaches 0 (the number smaller
than 1). Hence we may conclude that:

Euclid’s algorithm, finds NWD(n, m), where, n  m in at most 2log2n steps.

A challenging question for students is to find numbers n and m, for which Euclid’s
algorithm makes the largest number of steps. We have used a pair of such numbers
in our example above.

n m ri

34 21 13

21 13 8

13 8 5

8 5 3

5 3 2

3 2 1

2 1 0

FIBONACCI NUMBERS
The tendency of replacing a linear-time algorithm by a logarithmic-time algorithm,
illustrated by the exponentiation, is also present in some other problems, e.g. in
computing the values of Fibonacci numbers. The recurrence relation defining Fibo-
nacci numbers can be used to design and implement a linear-time algorithm which
avoids the use of very inefficient multiple (double) recursive calls. To obtain a loga-
rithmic-time algorithm for Fibonacci numbers we have to use a system of two recur-
rence relations in which recursive calls have indices reduced by about half. To avoid
inefficiency caused by mutual and multiple recursive calls in this system one can
also implement this algorithm using iteration from the initial (boundary) cases, see
details in (Sysło, 1998, 2015; Sysło & Kwiatkowska, 2014).

DIVIDE AND CONQUER
All the algorithmic methods discussed in this paper are based on divide and conquer
technique in its broad sense – at each step of the solution process the problem size
is reduced by at least half. In many applications of this strategy, the problem is re-
duced in size and moreover there are a number of subproblems (not only one like
above) which are to be solved on each level of the problem decomposition. In such
situations complexity formula contains some logarithmic components and also some
polynomial terms. We usually illustrate such behaviour of divide and conquer tech-
nique using a merge sort algorithm together with its complexity analysis (for the
problem size equal to a power of 2), see (Gurbiel at al., 2003; Sysło, 1997, 2016).

CONCLUSIONS
In this paper we focus on one of the most important concepts in informatics – loga-
rithm – and show how we introduce it and present its properties and applications to
students using a number of very popular building bricks of computer science. Loga-
rithmic thinking is one of the most important key competencies when designing effi-
cient solutions to real world practical problems.

All the topics discussed here are present in the textbook for informatics (Gurbiel et
al., 2003) used in high schools in Poland. This textbook meets the curriculum and
evaluation standards for school informatics approved by the Ministry of Education.

REFERENCES
Gurbiel, E., Hard-Olejniczak, G., Kołczyk, E., Krupicka, H., Sysło, M.M. (2003). In-

formatics (In Polish), Vols. 1 and 2, Textbook for high school. WSiP, Warszawa
Sysło, M.M. (1997). Algorithms (in Polish), WSiP, Warszawa; Helion, Gliwice 2016.
Sysło, M.M. (1998). Pyramids, Cones and Other Algorithmic Constructions (in

Polish). WSiP, Warszawa; Helion, Gliwice 2015.
Sysło, M.M., Kwiatkowska, A.B. (2006). Contribution of Informatics Education to

Mathematics Education in Schools. in: Mittermeir, R.T. (ed.) ISSEP 2006. LNCS,
vol. 4226, pp. 209–219. Springer, Heidelberg.

Sysło, M.M., Kwiatkowska, A.B. (2014). Introducing Students to Recursion: a Multi-
facet and Multi-tool Approach, in: Guelbahar, Y., Karatas, E., (eds.) ISSEP 2014.
LNCS, vol. 8730, pp. 124-137. Springer, Heidelberg. 2014.

Webb, D.C., van der Kooij, H., Geist, M.R. (2011). Design research in the Nether-
lands: introducing logarithms using realistic mathematics education, Journal of
Mathematics Education at Teachers College, Vol. 2, pp. 47-52.

Wing, J.M. (2006). Computational Thinking, Communictions of the ACM 49(3), 33-
35.

Biography

Maciej M. Sysło, mathematician and computer scientist – aca-
demic and school teacher, author of informatics curricula, educa-
tional software, textbooks and guidebooks for teachers, member
of national committees on education, Polish representative to IFIP
TC3, recipient of awards and grants: Steinhaus (Poland), Car (Po-
land), Mombusho (Japan), Humboldt (Germany), Fulbright (USA),
Best Practices in Education Award (2013), IFIP OSA (2014).

